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Chapter 1

Continuous-Time Signals1

Signals occur in a wide range of physical phenomenon. They might be
human speech, blood pressure variations with time, seismic waves, radar
and sonar signals, pictures or images, stress and strain signals in a building
structure, stock market prices, a city's population, or temperature across a
plate. These signals are often modeled or represented by a real or complex
valued mathematical function of one or more variables. For example,
speech is modeled by a function representing air pressure varying with
time. The function is acting as a mathematical analogy to the speech
signal and, therefore, is called an analog signal. For these signals, the
independent variable is time and it changes continuously so that the term
continuous-time signal is also used. In our discussion, we talk of the
mathematical function as the signal even though it is really a model or
representation of the physical signal.

The description of signals in terms of their sinusoidal frequency con-
tent has proven to be one of the most powerful tools of continuous and
discrete-time signal description, analysis, and processing. For that rea-
son, we will start the discussion of signals with a development of Fourier
transform methods. We will �rst review the continuous-time methods of
the Fourier series (FS), the Fourier transform or integral (FT), and the
Laplace transform (LT). Next the discrete-time methods will be developed
in more detail with the discrete Fourier transform (DFT) applied to �nite
length signals followed by the discrete-time Fourier transform (DTFT) for
in�nitely long signals and ending with the Z-transform which allows the
powerful tools of complex variable theory to be applied.

More recently, a new tool has been developed for the analysis of signals.
Wavelets and wavelet transforms [32], [9], [20], [60], [56] are another more

1This content is available online at <http://cnx.org/content/m16920/1.1/>.
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2 CHAPTER 1. CONTINUOUS-TIME SIGNALS

�exible expansion system that also can describe continuous and discrete-
time, �nite or in�nite duration signals. We will very brie�y introduce the
ideas behind wavelet-based signal analysis.

1.1 The Fourier Series

The problem of expanding a �nite length signal in a trigonometric series
was posed and studied in the late 1700's by renowned mathematicians
such as Bernoulli, d'Alembert, Euler, Lagrange, and Gauss. Indeed, what
we now call the Fourier series and the formulas for the coe�cients were
used by Euler in 1780. However, it was the presentation in 1807 and
the paper in 1822 by Fourier stating that an arbitrary function could
be represented by a series of sines and cosines that brought the problem
to everyone's attention and started serious theoretical investigations and
practical applications that continue to this day [31], [12], [37], [36], [28],
[45]. The theoretical work has been at the center of analysis and the
practical applications have been of major signi�cance in virtually every
�eld of quantitative science and technology. For these reasons and oth-
ers, the Fourier series is worth our serious attention in a study of signal
processing.

1.1.1 De�nition of the Fourier Series

We assume that the signal x (t) to be analyzed is well described by a real
or complex valued function of a real variable t de�ned over a �nite interval
{0 ≤ t ≤ T}. The trigonometric series expansion of x (t) is given by

x (t) =
a (0)

2
+
∞∑
k=1

a (k) cos
(

2π
T
kt

)
+ b (k) sin

(
2π
T
kt

)
. (1.1)

where xk (t) = cos (2πkt/T ) and yk (t) = sin (2πkt/T ) are the basis func-
tions for the expansion. The energy or power in an electrical, mechanical,
etc. system is a function of the square of voltage, current, velocity, pres-
sure, etc. For this reason, the natural setting for a representation of
signals is the Hilbert space of L2 [0, T ]. This modern formulation of the
problem is developed in [26], [37]. The sinusoidal basis functions in the
trigonometric expansion form a complete orthogonal set in L2 [0, T ]. The
orthogonality is easily seen from inner products

(
cos
(

2π
T
kt
)
, cos

(
2π
T
`t
))

=∫ T
0

(
cos
(

2π
T
kt
)
cos
(

2π
T
`t
))

dt = δ (k − `)
(1.2)
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3

and(
cos

(
2π
T
kt

)
, sin

(
2π
T
`t

))
=
∫ T

0

(
cos

(
2π
T
kt

)
sin

(
2π
T
`t

))
dt = 0

(1.3)
where δ (t) is the Kronecker delta function with δ (0) = 1 and δ (k 6= 0) =
0. Because of this, the kth coe�cients in the series can be found by taking
the inner product of x (t) with the kth basis functions. This gives for the
coe�cients

a (k) =
2
T

∫ T

0

x (t) cos
(

2π
T
kt

)
dt (1.4)

and

b (k) =
2
T

∫ T

0

x (t) sin
(

2π
T
kt

)
dt (1.5)

where T is the time interval of interest or the period of a periodic signal.
Because of the orthogonality of the basis functions, a �nite Fourier series
formed by truncating the in�nite series is an optimal least squared error
approximation to x (t). If the �nite series is de�ned by

^
x (t) =

a (0)
2

+
N∑
k=1

a (k) cos
(

2π
T
kt

)
+ b (k) sin

(
2π
T
kt

)
, (1.6)

the squared error is

ε =
1
T

∫ T

0

|x (t)− ^
x (t) |

2

dt (1.7)

which is minimized over all a (k) and b (k) by ((1.4)) and ((1.5)). This is
an extraordinarily important property.

It follows that if x (t) ∈ L2 [0, T ], then the series converges to x (t) in
the sense that ε → 0 as N → ∞[26], [37]. The question of point-wise
convergence is more di�cult. A su�cient condition that is adequate for
most application states: If f (x) is bounded, is piece-wise continuous, and
has no more than a �nite number of maxima over an interval, the Fourier
series converges point-wise to f (x) at all points of continuity and to the
arithmetic mean at points of discontinuities. If f (x) is continuous, the
series converges uniformly at all points [37], [31], [12].

A useful condition [26], [37] states that if x (t) and its derivatives
through the qth derivative are de�ned and have bounded variation, the
Fourier coe�cients a (k) and b (k) asymptotically drop o� at least as fast
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4 CHAPTER 1. CONTINUOUS-TIME SIGNALS

as 1
kq+1 as k →∞. This ties global rates of convergence of the coe�cients

to local smoothness conditions of the function.
The form of the Fourier series using both sines and cosines makes

determination of the peak value or of the location of a particular frequency
term di�cult. A di�erent form that explicitly gives the peak value of the
sinusoid of that frequency and the location or phase shift of that sinusoid
is given by

x (t) =
d (0)

2
+
∞∑
k=1

d (k) cos
(

2π
T
kt+ θ (k)

)
(1.8)

and, using Euler's relation and the usual electrical engineering notation
of j =

√
−1,

ejx = cos (x) + jsin (x) , (1.9)

the complex exponential form is obtained as

x (t) =
∞∑

k=−∞

c (k) ej
2π
T kt (1.10)

where

c (k) = a (k) + j b (k) . (1.11)

The coe�cient equation is

c (k) =
1
T

∫ T

0

x (t) e−j
2π
T ktdt (1.12)

The coe�cients in these three forms are related by

|d|2 = |c|2 = a2 + b2 (1.13)

and

θ = arg{c} = tan−1

(
b

a

)
(1.14)

It is easier to evaluate a signal in terms of c (k) or d (k) and θ (k) than
in terms of a (k) and b (k). The �rst two are polar representation of a
complex value and the last is rectangular. The exponential form is easier
to work with mathematically.

Although the function to be expanded is de�ned only over a speci�c
�nite region, the series converges to a function that is de�ned over the real
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5

line and is periodic. It is equal to the original function over the region
of de�nition and is a periodic extension outside of the region. Indeed,
one could arti�cially extend the given function at the outset and then the
expansion would converge everywhere.

1.1.2 A Geometric View

It can be very helpful to develop a geometric view of the Fourier series
where x (t) is considered to be a vector and the basis functions are the
coordinate or basis vectors. The coe�cients become the projections of
x (t) on the coordinates. The ideas of a measure of distance, size, and
orthogonality are important and the de�nition of error is easy to picture.
This is done in [26], [37], [62] using Hilbert space methods.

1.1.3 Properties of the Fourier Series

The properties of the Fourier series are important in applying it to signal
analysis and to interpreting it. The main properties are given here using
the notation that the Fourier series of a real valued function x (t) over
{0 ≤ t ≤ T} is given by F{x (t)} = c (k) and x̃ (t) denotes the periodic
extensions of x (t).

1. Linear: F{x + y} = F{x} + F{y} Idea of superposition. Also
scalability: F{ax} = aF{x}

2. Extensions of x (t): x̃ (t) = x̃ (t+ T )x̃ (t) is periodic.
3. Even and Odd Parts: x (t) = u (t) + jv (t) and C (k) = A (k) +
jB (k) = |C (k) | ejθ(k)

u v A B |C| θ

even 0 even 0 even 0

odd 0 0 odd even 0

0 even 0 even even π/2

0 odd odd 0 even π/2

Table 1.1

4. Convolution: If continuous cyclic convolution is de�ned by

y (t) = h (t) ◦ x (t) =
∫ T

0

h̃ (t− τ) x̃ (τ) dτ (1.15)

then F{h (t) ◦ x (t)} = F{h (t)}F{x (t)}

www.jntuworld.com



6 CHAPTER 1. CONTINUOUS-TIME SIGNALS

5. Multiplication: If discrete convolution is de�ned by

e (n) = d (n) ∗ c (n) =
∞∑

m=−∞
d (m) c (n−m) (1.16)

then F{h (t) x (t)} = F{h (t)} ∗ F{x (t)} This property is the
inverse of property 4 and vice versa.

6. Parseval: 1
T

∫ T
0
|x (t) |2dt =

∑∞
k=−∞ |C (k) |2 This property says

the energy calculated in the time domain is the same as that calcu-
lated in the frequency (or Fourier) domain.

7. Shift: F{x̃ (t− t0)} = C (k) e−j2πt0k/T A shift in the time domain
results in a linear phase shift in the frequency domain.

8. Modulate: F{x (t) ej2πKt/T } = C (k −K) Modulation in the time
domain results in a shift in the frequency domain. This property is
the inverse of property 7.

9. Orthogonality of basis functions:∫ T

0

e−j2πmt/T ej2πnt/T dt = T δ (n−m) = {
T if n = m

0 if n 6= m.

(1.17)
Orthogonality allows the calculation of coe�cients using inner prod-
ucts in ((1.4)) and ((1.5)). It also allows Parseval's Theorem in prop-
erty 6. A relaxed version of orthogonality is called �tight frames"
and is important in over-speci�ed systems, especially in wavelets.

1.1.4 Examples

• An example of the Fourier series is the expansion of a square wave
signal with period 2π. The expansion is

x (t) =
4
π

[
sin (t) +

1
3
sin (3t) +

1
5
sin (5t) · · ·

]
. (1.18)

Because x (t) is odd, there are no cosine terms (all a (k) = 0) and,
because of its symmetries, there are no even harmonics (even k terms
are zero). The function is well de�ned and bounded; its derivative
is not, therefore, the coe�cients drop o� as 1

k .
• A second example is a triangle wave of period 2π. This is a contin-

uous function where the square wave was not. The expansion of the
triangle wave is

x (t) =
4
π

[
sin (t)− 1

32
sin (3t) +

1
52
sin (5t) + · · ·

]
. (1.19)
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7

Here the coe�cients drop o� as 1
k2 since the function and its �rst

derivative exist and are bounded.

Note the derivative of a triangle wave is a square wave. Examine the
series coe�cients to see this. There are many books and web sites on the
Fourier series that give insight through examples and demos.

1.1.5 Theorems on the Fourier Series

Four of the most important theorems in the theory of Fourier analysis
are the inversion theorem, the convolution theorem, the di�erentiation
theorem, and Parseval's theorem [13].

• The inversion theorem is the truth of the transform pair given in
((1.1)), ((1.4)), and((1.5))..

• The convolution theorem is property 4.
• The di�erentiation theorem says that the transform of the derivative

of a function is jω times the transform of the function.
• Parseval's theorem is given in property 6.

All of these are based on the orthogonality of the basis function of the
Fourier series and integral and all require knowledge of the convergence
of the sums and integrals. The practical and theoretical use of Fourier
analysis is greatly expanded if use is made of distributions or generalized
functions (e.g. Dirac delta functions, δ (t)) [48], [3]. Because energy is
an important measure of a function in signal processing applications, the
Hilbert space of L2 functions is a proper setting for the basic theory and
a geometric view can be especially useful [26], [13].

The following theorems and results concern the existence and conver-
gence of the Fourier series and the discrete-time Fourier transform [46].
Details, discussions and proofs can be found in the cited references.

• If f (x) has bounded variation in the interval (−π, π), the Fourier
series corresponding to f (x) converges to the value f (x) at any
point within the interval, at which the function is continuous; it
converges to the value 1

2 [f (x+ 0) + f (x− 0)] at any such point at
which the function is discontinuous. At the points π,−π it converges
to the value 1

2 [f (−π + 0) + f (π − 0)]. [31]
• If f (x) is of bounded variation in (−π, π), the Fourier series con-

verges to f (x), uniformly in any interval (a, b) in which f (x) is
continuous, the continuity at a and b being on both sides. [31]

• If f (x) is of bounded variation in (−π, π), the Fourier series con-
verges to 1

2 [f (x+ 0) + f (x− 0)], bounded throughout the interval
(−π, π). [31]

www.jntuworld.com



8 CHAPTER 1. CONTINUOUS-TIME SIGNALS

• If f (x) is bounded and if it is continuous in its domain at every
point, with the exception of a �nite number of points at which it may
have ordinary discontinuities, and if the domain may be divided into
a �nite number of parts, such that in any one of them the function is
monotone; or, in other words, the function has only a �nite number
of maxima and minima in its domain, the Fourier series of f (x) con-
verges to f (x) at points of continuity and to 1

2 [f (x+ 0) + f (x− 0)]
at points of discontinuity. [31], [12]

• If f (x) is such that, when the arbitrarily small neighborhoods of
a �nite number of points in whose neighborhood |f (x) | has no
upper bound have been excluded, f (x) becomes a function with
bounded variation, then the Fourier series converges to the value
1
2 [f (x+ 0) + f (x− 0)], at every point in (−π, π), except the points
of in�nite discontinuity of the function, provided the improper in-
tegral

∫ π
−π f (x) dx exist, and is absolutely convergent. [31]

• If f is of bounded variation, the Fourier series of f converges at every
point x to the value [f (x+ 0) + f (x− 0)] /2. If f is, in addition,
continuous at every point of an interval I = (a, b), its Fourier series
is uniformly convergent in I. [64]

• If a (k) and b (k) are absolutely summable, the Fourier series con-
verges uniformly to f (x) which is continuous. [46]

• If a (k) and b (k) are square summable, the Fourier series converges
to f (x) where it is continuous, but not necessarily uniformly. [46]

• Suppose that f (x) is periodic, of period X, is de�ned and bounded
on [0, X] and that at least one of the following four conditions is
satis�ed: (i) f is piecewise monotonic on [0, X], (ii) f has a �nite
number of maxima and minima on [0, X] and a �nite number of
discontinuities on [0, X], (iii) f is of bounded variation on [0, X], (iv)
f is piecewise smooth on [0, X]: then it will follow that the Fourier
series coe�cients may be de�ned through the de�ning integral, using
proper Riemann integrals, and that the Fourier series converges to
f (x) at a.a.x, to f (x) at each point of continuity of f , and to the
value 1

2 [f (x−) + f (x+)] at all x. [13]
• For any 1 ≤ p <∞ and any f ∈ Cp

(
S1
)
, the partial sums

Sn = Sn (f) =
∑
|k|≤n

^
f (k) ek (1.20)

converge to f , uniformly as n→∞; in fact, ||Sn−f ||∞ is bounded
by a constant multiple of n−p+1/2. [26]

The Fourier series expansion results in transforming a periodic, continuous
time function, x̃ (t), to two discrete indexed frequency functions, a (k) and

www.jntuworld.com



9

b (k) that are not periodic.

1.2 The Fourier Transform

Many practical problems in signal analysis involve either in�nitely long
or very long signals where the Fourier series is not appropriate. For these
cases, the Fourier transform (FT) and its inverse (IFT) have been de-
veloped. This transform has been used with great success in virtually
all quantitative areas of science and technology where the concept of fre-
quency is important. While the Fourier series was used before Fourier
worked on it, the Fourier transform seems to be his original idea. It can
be derived as an extension of the Fourier series by letting the length or
period T increase to in�nity or the Fourier transform can be indepen-
dently de�ned and then the Fourier series shown to be a special case of
it. The latter approach is the more general of the two, but the former is
more intuitive [48], [3].

1.2.1 De�nition of the Fourier Transform

The Fourier transform (FT) of a real-valued (or complex) function of the
real-variable t is de�ned by

X (ω) =
∫ ∞
−∞

x (t) e−jωt dt (1.21)

giving a complex valued function of the real variable ω representing
frequency. The inverse Fourier transform (IFT) is given by

x (t) =
1

2π

∫ ∞
−∞

X (ω) ejωt dω. (1.22)

Because of the in�nite limits on both integrals, the question of conver-
gence is important. There are useful practical signals that do not have
Fourier transforms if only classical functions are allowed because of prob-
lems with convergence. The use of delta functions (distributions) in both
the time and frequency domains allows a much larger class of signals to
be represented [48].

1.2.2 Properties of the Fourier Transform

The properties of the Fourier transform are somewhat parallel to those of
the Fourier series and are important in applying it to signal analysis and
interpreting it. The main properties are given here using the notation

www.jntuworld.com



10 CHAPTER 1. CONTINUOUS-TIME SIGNALS

that the FT of a real valued function x (t) over all time t is given by
F{x} = X (ω).

1. Linear: F{x+ y} = F{x}+ F{y}
2. Even and Oddness: if x (t) = u (t) + jv (t) and X (ω) = A (ω) +
jB (ω) then

u v A B |X| θ

even 0 even 0 even 0

odd 0 0 odd even 0

0 even 0 even even π/2

0 odd odd 0 even π/2

Table 1.2

3. Convolution: If continuous convolution is de�ned by:

y (t) = h (t) ∗ x (t) =
∫∞
−∞ h (t− τ)x (τ) dτ =∫∞

−∞ h (λ)x (t− λ) dλ

(1.23)

then F{h (t) ∗ x (t)} = F{h (t)}F{x (t)}
4. Multiplication: F{h (t)x (t)} = 1

2πF{h (t)} ∗ F{x (t)}
5. Parseval:

∫∞
−∞ |x (t) |2dt = 1

2π

∫∞
−∞ |X (ω) |2dω

6. Shift: F{x (t− T )} = X (ω) e−jωT

7. Modulate: F{x (t) ej2πKt} = X (ω − 2πK)
8. Derivative: F{dxdt } = jωX (ω)
9. Stretch: F{x (at)} = 1

|a|X (ω/a)
10. Orthogonality:

∫∞
−∞ e−jω1tejω2t = 2πδ (ω1 − ω2)

1.2.3 Examples of the Fourier Transform

Deriving a few basic transforms and using the properties allows a large
class of signals to be easily studied. Examples of modulation, sampling,
and others will be given.

• If x (t) = δ (t) then X (ω) = 1
• If x (t) = 1 then X (ω) = 2πδ (ω)
• If x (t) is an in�nite sequence of delta functions spaced T apart,

x (t) =
∑∞
n=−∞ δ (t− nT ), its transform is also an in�nite sequence

www.jntuworld.com
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of delta functions of weight 2π/T spaced 2π/T apart, X (ω) =
2π
∑∞
k=−∞ δ (ω − 2πk/T ).

• Other interesting and illustrative examples can be found in [48], [3].

Note the Fourier transform takes a function of continuous time into a
function of continuous frequency, neither function being periodic. If �dis-
tribution" or �delta functions" are allowed, the Fourier transform of a
periodic function will be a in�nitely long string of delta functions with
weights that are the Fourier series coe�cients.

1.3 The Laplace Transform

The Laplace transform can be thought of as a generalization of the Fourier
transform in order to include a larger class of functions, to allow the use of
complex variable theory, to solve initial value di�erential equations, and
to give a tool for input-output description of linear systems. Its use in
system and signal analysis became popular in the 1950's and remains as
the central tool for much of continuous time system theory. The question
of convergence becomes still more complicated and depends on complex
values of s used in the inverse transform which must be in a �region of
convergence" (ROC).

1.3.1 De�nition of the Laplace Transform

The de�nition of the Laplace transform (LT) of a real valued function
de�ned over all positive time t is

F (s) =
∫ ∞
−∞

f (t) e−st dt (1.24)

and the inverse transform (ILT) is given by the complex contour integral

f (t) =
1

2πj

∫ c+j∞

c−j∞
F (s) est ds (1.25)

where s = σ + jω is a complex variable and the path of integration for
the ILT must be in the region of the s plane where the Laplace transform
integral converges. This de�nition is often called the bilateral Laplace
transform to distinguish it from the unilateral transform (ULT) which
is de�ned with zero as the lower limit of the forward transform integral
((1.24)). Unless stated otherwise, we will be using the bilateral transform.

Notice that the Laplace transform becomes the Fourier transform on
the imaginary axis, for s = jω. If the ROC includes the jω axis, the
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12 CHAPTER 1. CONTINUOUS-TIME SIGNALS

Fourier transform exists but if it does not, only the Laplace transform of
the function exists.

There is a considerable literature on the Laplace transform and its use
in continuous-time system theory. We will develop most of these ideas for
the discrete-time system in terms of the z-transform later in this chapter
and will only brie�y consider only the more important properties here.

The unilateral Laplace transform cannot be used if useful parts of the
signal exists for negative time. It does not reduce to the Fourier transform
for signals that exist for negative time, but if the negative time part of a
signal can be neglected, the unilateral transform will converge for a much
larger class of function that the bilateral transform will. It also makes the
solution of linear, constant coe�cient di�erential equations with initial
conditions much easier.

1.3.2 Properties of the Laplace Transform

Many of the properties of the Laplace transform are similar to those for
Fourier transform [3], [48], however, the basis functions for the Laplace
transform are not orthogonal. Some of the more important ones are:

1. Linear: L{x+ y} = L{x}+ L{y}
2. Convolution: If y (t) = h (t) ∗ x (t) =

∫
h (t− τ) x (τ) dτ then

L{h (t) ∗ x (t)} = L{h (t)}L{x (t)}
3. Derivative: L{dxdt } = sL{x (t)}
4. Derivative (ULT): L{dxdt } = sL{x (t)} − x (0)
5. Integral: L{

∫
x (t) dt} = 1

sL{x (t)}
6. Shift: L{x (t− T )} = C (k) e−Ts

7. Modulate: L{x (t) ejω0t} = X (s− jω0)

Examples can be found in [48], [3] and are similar to those of the z-
transform presented later in these notes. Indeed, note the parallals and
di�erences in the Fourier series, Fourier transform, and Z-transform.
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Chapter 2

Discrete-Time Signals1

Although the discrete-time signal x (n) could be any ordered sequence
of numbers, they are usually samples of a continuous-time signal. In
this case, the real or imaginary valued mathematical function x (n) of the
integer n is not used as an analogy of a physical signal, but as some repre-
sentation of it (such as samples). In some cases, the term digital signal is
used interchangeably with discrete-time signal, or the label digital signal
may be use if the function is not real valued but takes values consistent
with some hardware system.

Indeed, our very use of the term �discrete-time" indicates the prob-
able origin of the signals when, in fact, the independent variable could
be length or any other variable or simply an ordering index. The term
�digital" indicates the signal is probably going to be created, processed, or
stored using digital hardware. As in the continuous-time case, the Fourier
transform will again be our primary tool [47], [49], [4].

Notation has been an important element in mathematics. In some
cases, discrete-time signals are best denoted as a sequence of values, in
other cases, a vector is created with elements which are the sequence
values. In still other cases, a polynomial is formed with the sequence
values as coe�cients for a complex variable. The vector formulation allows
the use of linear algebra and the polynomial formulation allows the use
of complex variable theory.

1This content is available online at <http://cnx.org/content/m16881/1.1/>.
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14 CHAPTER 2. DISCRETE-TIME SIGNALS

2.1 The Discrete Fourier Transform

The description of signals in terms of their sinusoidal frequency content
has proven to be as powerful and informative for discrete-time signals as it
has for continuous-time signals. It is also probably the most powerful com-
putational tool we will use. We now develop the basic discrete-time meth-
ods starting with the discrete Fourier transform (DFT) applied to �nite
length signals, followed by the discrete-time Fourier transform (DTFT)
for in�nitely long signals, and ending with the z-transform which uses the
powerful tools of complex variable theory.

2.1.1 De�nition of the DFT

It is assumed that the signal x (n) to be analyzed is a sequence of N real
or complex values which are a function of the integer variable n. The
DFT of x (n), also called the spectrum of x (n), is a length N sequence of
complex numbers denoted C (k) and de�ned by

C (k) =
N−1∑
n=0

x (n) e−j
2π
N nk (2.1)

using the usual engineering notation: j =
√
−1. The inverse transform

(IDFT) which retrieves x (n) from C (k) is given by

x (n) =
1
N

N−1∑
k=0

C (k) ej
2π
N nk (2.2)

which is easily veri�ed by substitution into (1). Indeed, this veri�cation
will require using the orthogonality of the basis function of the DFT which
is

N−1∑
k=0

e−j
2π
N mkej

2π
N nk = {

N if n = m

0 if n 6= m.
(2.3)

The exponential basis functions, e−j
2π
N k, for k ∈ {0, N − 1}, are the N

values of the Nth roots of unity (the N zeros of the polynomial (s− 1)N ).
This property is what connects the DFT to convolution and allows e�cient
algorithms for calculation to be developed [7]. They are used so often that
the following notation is de�ned by

WN = e−j
2π
N (2.4)
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with the subscript being omitted if the sequence length is obvious from
context. Using this notation, the DFT becomes

C (k) =
N−1∑
n=0

x (n) Wnk
N (2.5)

One should notice that with the �nite summation of the DFT, there is
no question of convergence or of the ability to interchange the order of
summation. No �delta functions� are needed and the N transform values
can be calculated exactly (within the accuracy of the computer or calcu-
lator used) from the N signal values with a �nite number of arithmetic
operations.

2.1.2 Matrix Formulation of the DFT

There are several advantages to using a matrix formulation of the DFT.
This is given by writing ((2.1)) or ((2.5)) in matrix operator form as



C0

C1

C2

.

.

.

CN−1


=



W 0 W 0 W 0 · · · W 0

W 0 W 1 W 2

W 0 W 2 W 4

.

.

.

.

.

.

W 0 · · · W (N−1)(N−1)





x0

x1

x2

.

.

.

xN−1


(2.6)

or

C = Fx. (2.7)

The orthogonality of the basis function in ((2.1)) shows up in this matrix
formulation by the columns of F being orthogonal to each other as are
the rows. This means that FTF = kI, where k is a scalar constant, and,
therefore, FT = kF−1. This is called a unitary operator.

The de�nition of the DFT in ((2.1)) emphasizes the fact that each of
the N DFT values are the sum of N products. The matrix formulation in
((2.6)) has two interpretations. Each k-th DFT term is the inner product
of two vectors, k-th row of F and x; or, the DFT vector, C is a weighted
sum of the N columns of F with weights being the elements of the signal
vector x. A third view of the DFT is the operator view which is simply
the single matrix equation ((2.7)).
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16 CHAPTER 2. DISCRETE-TIME SIGNALS

It is instructive at this point to write a computer program to calculate
the DFT of a signal. In Matlab [43], there is a pre-programmed function to
calculate the DFT, but that hides the scalar operations. One should pro-
gram the transform in the scalar interpretive language of Matlab or some
other lower level language such as FORTRAN, C, BASIC, Pascal, etc.
This will illustrate how many multiplications and additions and trigono-
metric evaluations are required and how much memory is needed. Do
not use a complex data type which also hides arithmetic, but use Euler's
relations

ejx = cos (x) + jsin (x) (2.8)

to explicitly calculate the real and imaginary part of C (k).
If Matlab is available, �rst program the DFT using only scalar opera-

tions. It will require two nested loops and will run rather slowly because
the execution of loops is interpreted. Next, program it using vector inner
products to calculate each C (k) which will require only one loop and will
run faster. Finally, program it using a single matrix multiplication requir-
ing no loops and running much faster. Check the memory requirements
of the three approaches.

The DFT and IDFT are a completely well-de�ned, legitimate trans-
form pair with a sound theoretical basis that do not need to be derived
from or interpreted as an approximation to the continuous-time Fourier
series or integral. The discrete-time and continuous-time transforms and
other tools are related and have parallel properties, but neither depends
on the other.

The notation used here is consistent with most of the literature and
with the standards given in [17]. The independent index variable n of
the signal x (n) is an integer, but it is usually interpreted as time or,
occasionally, as distance. The independent index variable k of the DFT
C (k) is also an integer, but it is generally considered as frequency. The
DFT is called the spectrum of the signal and the magnitude of the complex
valued DFT is called the magnitude of that spectrum and the angle or
argument is called the phase.

2.1.3 Extensions of

Although the �nite length signal x (n) is de�ned only over the interval
{0 ≤ n ≤ (N − 1)}, the IDFT of C (k) can be evaluated outside this
interval to give well de�ned values. Indeed, this process gives the periodic
property 4. There are two ways of formulating this phenomenon. One
is to periodically extend x (n) to −∞ and +∞ and work with this new
signal. A second more general way is evaluate all indices n and k modulo
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N . Rather than considering the periodic extension of x (n) on the line
of integers, the �nite length line is formed into a circle or a line around
a cylinder so that after counting to N − 1, the next number is zero, not
a periodic replication of it. The periodic extension is easier to visualize
initially and is more commonly used for the de�nition of the DFT, but the
evaluation of the indices by residue reduction modulo N is a more general
de�nition and can be better utilized to develop e�cient algorithms for
calculating the DFT [7].

Since the indices are evaluated only over the basic interval, any values
could be assigned x (n) outside that interval. The periodic extension is
the choice most consistent with the other properties of the transform,
however, it could be assigned to zero [47]. An interesting possibility is
to arti�cially create a length 2N sequence by appending x (−n) to the
end of x (n). This would remove the discontinuities of periodic extensions
of this new length 2N signal and perhaps give a more accurate measure
of the frequency content of the signal with no artifacts caused by �end
e�ects". Indeed, this modi�cation of the DFT gives what is called the
discrete cosine transform (DCT) [27]. We will assume the implicit periodic
extensions to x (n) with no special notation unless this characteristic is
important, then we will use the notation x̃ (n).

2.1.4 Convolution

Convolution is an important operation in signal processing that is in
some ways more complicated in discrete-time signal processing than in
continuous-time signal processing and in other ways easier. The basic
input-output relation for a discrete-time system is given by so-called lin-
ear or non-cyclic convolution de�ned and denoted by

y (n) =
∞∑

m=−∞
h (m) x (n−m) = h (n) ∗ x (n) (2.9)

where x (n) is the perhaps in�nitely long input discrete-time signal, h (n)
is the perhaps in�nitely long impulse response of the system, and y (n) is
the output. The DFT is, however, intimately related to cyclic convolution,
not non-cyclic convolution. Cyclic convolution is de�ned and denoted by

ỹ (n) =
N−1∑
m=0

h̃ (m) x̃ (n−m) = h (n) ◦ x (n) (2.10)

where either all of the indices or independent integer variables are eval-
uated modulo N or all of the signals are periodically extended outside
their length N domains.
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18 CHAPTER 2. DISCRETE-TIME SIGNALS

This cyclic (sometimes called circular) convolution can be expressed as
a matrix operation by converting the signal h (n) into a matrix operator
as

H =



h0 hL−1 hL−2 · · · h1

h1 h0 hL−1

h2 h1 h0

...
...

hL−1 · · · h0


, (2.11)

The cyclic convolution can then be written in matrix notation as

Y = HX (2.12)

where X and Y are column matrices or vectors of the input and output
values respectively.

Because non-cyclic convolution is often what you want to do and cyclic
convolution is what is related to the powerful DFT, we want to develop
a way of doing non-cyclic convolution by doing cyclic convolution.

The convolution of a length N sequence with a length M sequence
yields a length N +M − 1 output sequence. The calculation of non-cyclic
convolution by using cyclic convolution requires modifying the signals by
appending zeros to them. This will be developed later.

2.1.5 Properties of the DFT

The properties of the DFT are extremely important in applying it to
signal analysis and to interpreting it. The main properties are given here
using the notation that the DFT of a length-N complex sequence x (n) is
F{x (n)} = C (k).

1. Linear Operator: F{x (n) + y (n)} = F{x (n)}+ F{y (n)}
2. Unitary Operator: F−1 = 1

NFT

3. Periodic Spectrum: C (k) = C (k +N)
4. Periodic Extensions of x (n): x (n) = x (n+N)
5. Properties of Even and Odd Parts: x (n) = u (n) + jv (n) and
C (k) = A (k) + jB (k)
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u v A B |C| θ

even 0 even 0 even 0

odd 0 0 odd even π/2

0 even 0 even even π/2

0 odd odd 0 even 0

Table 2.1

6. Cyclic Convolution: F{h (n) ◦ x (n)} = F{h (n)}F{x (n)}
7. Multiplication: F{h (n)x (n)} = F{h (n)} ◦ F{x (n)}
8. Parseval:

∑N−1
n=0 |x (n) |2 = 1

N

∑N−1
k=0 |C (k) |2

9. Shift: F{x (n−M)} = C (k) e−j2πMk/N

10. Modulate: F{x (n) ej2πKn/N} = C (k −K)
11. Down Sample or Decimate: F{x (Kn)} = 1

K

∑K−1
m=0 C (k + Lm)

where N = LK
12. Up Sample or Stretch: If xs (2n) = x (n) for integer n and zero

otherwise, then F{xs (n)} = C (k), for k = 0, 1, 2, ..., 2N − 1
13. N Roots of Unity:

(
W k
N

)N = 1 for k = 0, 1, 2, ..., N − 1
14. Orthogonality:

N−1∑
k=0

e−j2πmk/Nej2πnk/N = {
N if n = m

0 if n 6= m.
(2.13)

15. Diagonalization of Convolution: If cyclic convolution is expressed as
a matrix operation by y = Hx with H given by ((2.11)), the DFT
operator diagonalizes the convolution operator H, or FTHF = Hd

where Hd is a diagonal matrix with the N values of the DFT of
h (n) on the diagonal. This is a matrix statement of Property 6.
Note the columns of F are the N eigenvectors of H, independent of
the values of h (n).

One can show that any �kernel" of a transform that would support cyclic,
length-N convolution must be the N roots of unity. This says the DFT
is the only transform over the complex number �eld that will support
convolution. However, if one considers various �nite �elds or rings, an
interesting transform, called the Number Theoretic Transform, can be
de�ned and used because the roots of unity are simply two raised to a
powers which is a simple word shift for certain binary number represen-
tations [1], [2].
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20 CHAPTER 2. DISCRETE-TIME SIGNALS

2.1.6 Examples of the DFT

It is very important to develop insight and intuition into the DFT or spec-
tral characteristics of various standard signals. A few DFT's of standard
signals together with the above properties will give a fairly large set of
results. They will also aid in quickly obtaining the DFT of new signals.
The discrete-time impulse δ (n) is de�ned by

δ (n) = {
1 when n = 0

0 otherwise
(2.14)

The discrete-time pulse uM (n) is de�ned by

uM (n) = {
1 when n = 0, 1, · · · ,M − 1

0 otherwise
(2.15)

Several examples are:

• DFT{δ (n)} = 1, The DFT of an impulse is a constant.
• DFT{1} = Nδ (k), The DFT of a constant is an impulse.
•

DFT{ej2πKn/N} = Nδ (k −K) (2.16)

•

DFT{cos (2πMn/N) =
N

2
[δ (k −M) + δ (k +M)] (2.17)

•
DFT{uM (n)} =

sin
(
π
NMk

)
sin
(
π
N k
) (2.18)

These examples together with the properties can generate a still larger
set of interesting and enlightening examples. Matlab can be used to ex-
periment with these results and to gain insight and intuition.

2.2 The Discrete-Time Fourier Transform

In addition to �nite length signals, there are many practical problems
where we must be able to analyze and process essentially in�nitely long
sequences. For continuous-time signals, the Fourier series is used for �nite
length signals and the Fourier transform or integral is used for in�nitely
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long signals. For discrete-time signals, we have the DFT for �nite length
signals and we now present the discrete-time Fourier transform (DTFT)
for in�nitely long signals or signals that are longer than we want to specify
[47]. The DTFT can be developed as an extension of the DFT as N goes
to in�nity or the DTFT can be independently de�ned and then the DFT
shown to be a special case of it. We will do the latter.

2.2.1 De�nition of the DTFT

The DTFT of a possibly in�nitely long real (or complex) valued sequence
f (n) is de�ned to be

F (ω) =
∞∑
−∞

f (n) e−jωn (2.19)

and its inverse denoted IDTFT is given by

f (n) =
1

2π

∫ π

−π
F (ω) ejωn dω. (2.20)

Veri�cation by substitution is more di�cult than for the DFT. Here con-
vergence and the interchange of order of the sum and integral are serious
questions and have been the topics of research over many years. Dis-
cussions of the Fourier transform and series for engineering applications
can be found in [49], [4]. It is necessary to allow distributions or delta
functions to be used to gain the full bene�t of the Fourier transform.

Note that the de�nition of the DTFT and IDTFT are the same as the
de�nition of the IFS and FS respectively. Since the DTFT is a contin-
uous periodic function of ω, its Fourier series is a discrete set of values
which turn out to be the original signal. This duality can be helpful
in developing properties and gaining insight into various problems. The
conditions on a function to determine if it can be expanded in a FS are
exactly the conditions on a desired frequency response or spectrum that
will determine if a signal exists to realize or approximate it.

2.2.2 Properties

The properties of the DTFT are similar to those for the DFT and are
important in the analysis and interpretation of long signals. The main
properties are given here using the notation that the DTFT of a complex
sequence x (n) is F{x (n)} = X (ω).

1. Linear Operator: F{x+ y} = F{x}+ F{y}
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22 CHAPTER 2. DISCRETE-TIME SIGNALS

2. Periodic Spectrum: X (ω) = X (ω + 2π)
3. Properties of Even and Odd Parts: x (n) = u (n) + jv (n) and
X (ω) = A (ω) + jB (ω)

u v A B |X| θ

even 0 even 0 even 0

odd 0 0 odd even 0

0 even 0 even even π/2

0 odd odd 0 even π/2

Table 2.2

4. Convolution: If non-cyclic or linear convolution is de�ned by:

y (n) = h (n) ∗ x (n) =∑∞
m=−∞ h (n−m)x (m) =

∑∞
k=−∞ h (k)x (n− k)

(2.21)

then F{h (n) ∗ x (n)} = F{h (n)}F{x (n)}
5. Multiplication: If cyclic convolution is de�ned by:

Y (ω) = H (ω) ◦X (ω) =
∫ T

0

H̃ (ω − Ω) X̃ (Ω) dΩ (2.22)

F{h (n)x (n)} =
1

2π
F{h (n)} ◦ F{x (n)} (2.23)

6. Parseval:
∑∞
n=−∞ |x (n) |2 = 1

2π

∫ π
−π |X (ω) |2dω

7. Shift: F{x (n−M)} = X (ω) e−jωM

8. Modulate: F{x (n) ejω0n} = X (ω − ω0)
9. Sample: F{x (Kn)} = 1

K

∑K−1
m=0 X (ω + Lm) where N = LK

10. Stretch: F{xs (n)} = X (ω), for −Kπ ≤ ω ≤ Kπ where
xs (Kn) = x (n) for integer n and zero otherwise.

11. Orthogonality:
∑∞
n=−∞ e−jω1ne−jω2n = 2πδ (ω1 − ω2)

2.2.3 Evaluation of the DTFT by the DFT

If the DTFT of a �nite sequence is taken, the result is a continuous
function of ω. If the DFT of the same sequence is taken, the results are
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N evenly spaced samples of the DTFT. In other words, the DTFT of a
�nite signal can be evaluated at N points with the DFT.

X (ω) = DTFT{x (n)} =
∞∑

n=−∞
x (n) e−jωn (2.24)

and because of the �nite length

X (ω) =
N−1∑
n=0

x (n) e−jωn. (2.25)

If we evaluate ω at N equally space points, this becomes

X

(
2π
N
k

)
=

N−1∑
n=0

x (n) e−j
2π
N kn (2.26)

which is the DFT of x (n). By adding zeros to the end of x (n) and taking
a longer DFT, any density of points can be evaluated. This is useful in
interpolation and in plotting the spectrum of a �nite length signal. This
is discussed further in Chapter4 .

There is an interesting variation of the Parseval's theorem for the
DTFT of a �nite length-N signal. If x (n) 6= 0 for 0 ≥ n ≥ N − 1, and if
L ≥ N , then

N−1∑
n=0

|x (n) |2 =
1
L

L−1∑
k=0

|X (2πk/L) |2 =
1
π

∫ π

0

|X (ω) |2 dω. (2.27)

The second term in ((2.27)) says the Riemann sum is equal to its limit
in this case.

2.2.4 Examples of DTFT

As was true for the DFT, insight and intuition is developed by under-
standing the properties and a few examples of the DTFT. Several exam-
ples are given below and more can be found in the literature [47], [49],
[4]. Remember that while in the case of the DFT signals were de�ned on
the region {0 ≤ n ≤ (N − 1)} and values outside that region were peri-
odic extensions, here the signals are de�ned over all integers and are not
periodic unless explicitly stated. The spectrum is periodic with period
2π.

• DTFT{δ (n)} = 1 for all frequencies.
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•
DTFT{1} = 2πδ (ω) (2.28)

•
DTFT{ejω0n} = 2πδ (ω − ω0) (2.29)

•
DTFT{cos (ω0n)} = π [δ (ω − ω0) + δ (ω + ω0)] (2.30)

•
DTFT{uM (n)} =

sin (ωMk/2)
sin (ωk/2)

(2.31)

2.3 The Z-Transform

The z-transform is an extension of the DTFT in a way that is analogous
to the Laplace transform for continuous-time signals being an extension
of the Fourier transform. It allows the use of complex variable theory and
is particularly useful in analyzing and describing systems. The question
of convergence becomes still more complicated and depends on values of z
used in the inverse transform which must be in the �region of convergence"
(ROC).

2.3.1 De�nition of the Z-Transform

The z-transform (ZT) is de�ned as a polynomial in the complex variable
z with the discrete-time signal values as its coe�cients [29], [53], [47]. It
is given by

F (z) =
∞∑

n=−∞
f (n) z−n (2.32)

and the inverse transform (IZT) is

f (n) =
1

2πj

∮
ROC

F (z) zn−1dz. (2.33)

The inverse transform can be derived by using the residue theorem [14],
[49] from complex variable theory to �nd f (0) from z−1F (z), f (1) from
F (z), f (2) from zF (z), and in general, f (n) from zn−1F (z). Veri�ca-
tion by substitution is more di�cult than for the DFT or DTFT. Here
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convergence and the interchange of order of the sum and integral is a seri-
ous question that involves values of the complex variable z. The complex
contour integral in ((2.33)) must be taken in the ROC of the z plane.

A unilateral z-transform is sometimes needed where the de�nition
((2.33)) uses a lower limit on the transform summation of zero. This
allow the transformation to converge for some functions where the regu-
lar bilateral transform does not, it provides a straightforward way to solve
initial condition di�erence equation problems, and it simpli�es the ques-
tion of �nding the ROC. The bilateral z-transform is used more for signal
analysis and the unilateral transform is used more for system descrip-
tion and analysis. Unless stated otherwise, we will be using the bilateral
z-transform.

2.3.2 Properties

The properties of the ZT are similar to those for the DTFT and DFT and
are important in the analysis and interpretation of long signals and in the
analysis and description of discrete-time systems. The main properties
are given here using the notation that the ZT of a complex sequence x (n)
is Z{x (n)} = X (z).

1. Linear Operator: Z{x+ y} = Z{x}+ Z{y}
2. Relationship of ZT to DTFT: Z{x}|z=ejω = DT FT {x}
3. Periodic Spectrum: X

(
ejω
)

= X
(
ejω+2π

)
4. Properties of Even and Odd Parts: x (n) = u (n) + jv (n) and
X
(
ejω
)

= A
(
ejω
)

+ jB
(
ejω
)

u v A B

even 0 even 0

odd 0 0 odd

0 even 0 even

0 odd odd 0

(2.34)

5. Convolution: If discrete non-cyclic convolution is de�ned by

y (n) = h (n) ∗ x (n) =∑∞
m=−∞ h (n−m)x (m) =

∑∞
k=−∞ h (k)x (n− k)

(2.35)

then Z{h (n) ∗ x (n)} = Z{h (n)}Z{x (n)}
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6. Shift: Z{x (n+M)} = zMX (z)
7. Shift (unilateral): Z{x (n+m)} = zmX (z) − zmx (0) −
zm−1x (1)− · · · − zx (m− 1)

8. Shift (unilateral): Z{x (n−m)} = z−mX (z) − z−m+1x (−1) −
· · · − x (−m)

9. Modulate: Z{x (n) an} = X (z/a)
10. Time mult.: Z{nmx (n)} = (−z)m dmX(z)

dzm

11. Evaluation: The ZT can be evaluated on the unit circle in the z-
plane by taking the DTFT of x (n) and if the signal is �nite in
length, this can be evaluated at sample points by the DFT.

2.3.3 Examples of the Z-Transform

A few examples together with the above properties will enable one to
solve and understand a wide variety of problems. These use the unit step
function to remove the negative time part of the signal. This function is
de�ned as

u (n) = {
1 if n ≥ 0

0 if n < 0
(2.36)

and several bilateral z-transforms are given by

• Z{δ (n)} = 1 for all z.
• Z{u (n)} = z

z−1 for |z| > 1.
• Z{u (n) an} = z

z−a for |z| > |a|.

Notice that these are similar to but not the same as a term of a partial
fraction expansion.

2.3.4 Inversion of the Z-Transform

The z-transform can be inverted in three ways. The �rst two have similar
procedures with Laplace transformations and the third has no counter
part.

• The z-transform can be inverted by the de�ned contour integral in
the ROC of the complex z plane. This integral can be evaluated
using the residue theorem [14], [49].

• The z-transform can be inverted by expanding 1
zF (z) in a partial

fraction expansion followed by use of tables for the �rst or second
order terms.
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• The third method is not analytical but numerical. If F (z) = P (z)
Q(z) ,

f (n) can be obtained as the coe�cients of long division.

For example

z

z − a
= 1 + a z−1 + a2z−2 + · · · (2.37)

which is u (n) an as used in the examples above.
We must understand the role of the ROC in the convergence and

inversion of the z-transform. We must also see the di�erence between the
one-sided and two-sided transform.

2.3.5 Solution of Di�erence Equations using the Z-

Transform

The z-transform can be used to convert a di�erence equation into an alge-
braic equation in the same manner that the Laplace converts a di�erential
equation in to an algebraic equation. The one-sided transform is particu-
larly well suited for solving initial condition problems. The two unilateral
shift properties explicitly use the initial values of the unknown variable.

A di�erence equation DE contains the unknown function x (n) and
shifted versions of it such as x (n− 1) or x (n+ 3). The solution of the
equation is the determination of x (t). A linear DE has only simple linear
combinations of x (n) and its shifts. An example of a linear second order
DE is

a x (n) + b x (n− 1) + c x (n− 2) = f (n) (2.38)

A time invariant or index invariant DE requires the coe�cients not be
a function of n and the linearity requires that they not be a function of
x (n). Therefore, the coe�cients are constants.

This equation can be analyzed using classical methods completely
analogous to those used with di�erential equations. A solution of the
form x (n) = Kλn is substituted into the homogeneous di�erence equa-
tion resulting in a second order characteristic equation whose two roots
give a solution of the form xh (n) = K1λ

n
1 +K2λ

n
2 . A particular solution

of a form determined by f (n) is found by the method of undetermined
coe�cients, convolution or some other means. The total solution is the
particular solution plus the solution of the homogeneous equation and the
three unknown constants Ki are determined from three initial conditions
on x (n).

It is possible to solve this di�erence equation using z-transforms in a
similar way to the solving of a di�erential equation by use of the Laplace
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transform. The z-transform converts the di�erence equation into an alge-
braic equation. Taking the ZT of both sides of the DE gives

aX (z) + b [z−1X (z) + x (−1)] +
c [z−2X (z) + z−1x (−1) + x (−2)] = Y (z)

(2.39)

solving for X (z) gives

X (z) =
z2 [Y (z)− b x (−1)− x (−2)]− z c x (−1)

a z2 + b z + c
(2.40)

and inversion of this transform gives the solution x (n). Notice that two
initial values were required to give a unique solution just as the classical
method needed two values.

These are very general methods. To solve an nth order DE requires
only factoring an nth order polynomial and performing a partial fraction
expansion, jobs that computers are well suited to. There are problems
that crop up if the denominator polynomial has repeated roots or if the
transform of y (n) has a root that is the same as the homogeneous equa-
tion, but those can be handled with slight modi�cations giving solutions
with terms of the from nλn just as similar problems gave solutions for
di�erential equations of the form t est.

The original DE could be rewritten in a di�erent form by shifting the
index to give

a x (n+ 2) + b x (n+ 1) + c x (n) = f (n+ 2) (2.41)

which can be solved using the second form of the unilateral z-transform
shift property.

2.3.6 Region of Convergence for the Z-Transform

Since the inversion integral must be taken in the ROC of the transform,
it is necessary to understand how this region is determined and what it
means even if the inversion is done by partial fraction expansion or long
division. Since all signals created by linear constant coe�cient di�erence
equations are sums of geometric sequences (or samples of exponentials),
an analysis of these cases will cover most practical situations. Consider a
geometric sequence starting at zero.

f (n) = u (n) an (2.42)
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with a z-transform

F (z) = 1 + a z−1 + a2 z−2 + a3 z−3 + · · ·+ aMz−M . (2.43)

Multiplying by a z−1 gives

a z−1F (z) = a z−1 + a2z−2 + a3z−3 + a4z−4 + · · ·+
aM+1z−M−1

(2.44)

and subtracting from (2.32) gives(
1− a z−1

)
F (z) = 1− aM+1z−M−1 (2.45)

Solving for F (z) results in

F (z) =
1− aM+1z−M−1

1− a z−1
=

z − a
(
a
z

)M
z − a

(2.46)

The limit of this sum as M →∞ is

F (z) =
z

z − a
(2.47)

for |z| > |a|. This not only establishes the z-transform of f (n) but gives
the region in the z plane where the sum converges.

If a similar set of operations is performed on the sequence that exists
for negative n

f (n) = u (−n− 1) an = {
an n < 0

0 n ≥ 0
(2.48)

the result is

F (z) = − z

z − a
(2.49)

for |z| < |a|. Here we have exactly the same z-transform for a di�erent
sequence f (n) but with a di�erent ROC. The pole in F (z) divides the
z-plane into two regions that give two di�erent f (n). This is a general
result that can be applied to a general rational F (z) with several poles
and zeros. The z-plane will be divided into concentric annular regions
separated by the poles. The contour integral is evaluated in one of these
regions and the poles inside the contour give the part of the solution
existing for negative n with the poles outside the contour giving the part
of the solution existing for positive n.
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Notice that any �nite length signal has a z-transform that converges
for all z. The ROC is the entire z-plane except perhaps zero and/or
in�nity.

2.3.7 Relation of the Z-Transform to the DTFT and

the DFT

The FS coe�cients are weights on the delta functions in a FT of the
periodically extended signal. The FT is the LT evaluated on the imaginary
axis: s = jω.

The DFT values are samples of the DTFT of a �nite length signal.
The DTFT is the z-transform evaluated on the unit circle in the z plane.

F (z) =
∞∑

n=−∞
x (n) z−n = ZT {x (n)} (2.50)

F
(
ejω
)

=
∞∑

n=−∞
x (n) e−jωn = DT FT {x (n)} (2.51)

and if x (n) is of length N

F
(
ej

2π
N k
)

=
N−1∑
n=0

x (n) e−j
2π
N kn = DFT {x (n)} (2.52)

It is important to be able to relate the time-domain signal x (n), its
spectrumX (ω), and its z-transform represented by the pole-zero locations
on the z plane.

2.4 Relationships Among Fourier Transforms

The DFT takes a periodic discrete-time signal into a periodic discrete-
frequency representation.

The DTFT takes a discrete-time signal into a periodic continuous-
frequency representation.

The FS takes a periodic continuous-time signal into a discrete-
frequency representation.

The FT takes a continuous-time signal into a continuous-frequency
representation.

The LT takes a continuous-time signal into a function of a continuous
complex variable.

The ZT takes a discrete-time signal into a function of a continuous
complex variable.
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2.5 Wavelet-Based Signal Analysis

There are wavelet systems and transforms analogous to the DFT, Fourier
series, discrete-time Fourier transform, and the Fourier integral. We will
start with the discrete wavelet transform (DWT) which is analogous to
the Fourier series and probably should be called the wavelet series [10].
Wavelet analysis can be a form of time-frequency analysis which locates
energy or events in time and frequency (or scale) simultaneously. It is
somewhat similar to what is called a short-time Fourier transform or a
Gabor transform or a windowed Fourier transform.

The history of wavelets and wavelet based signal processing is fairly
recent. Its roots in signal expansion go back to early geophysical and
image processing methods and in DSP to �lter bank theory and subband
coding. The current high interest probably started in the late 1980's
with the work of Mallat, Daubechies, and others. Since then, the amount
of research, publication, and application has exploded. Two excellent
descriptions of the history of wavelet research and development are by
Hubbard [33] and by Daubechies [23] and a projection into the future by
Sweldens [58] and Burrus [8].

2.5.1 The Basic Wavelet Theory

The ideas and foundations of the basic dyadic, multiresolution wavelet
systems are now pretty well developed, understood, and available [10],
[21], [61], [57]. The �rst basic requirement is that a set of expansion
functions (usually a basis) are generated from a single �mother� function
by translation and scaling. For the discrete wavelet expansion system,
this is

φj,k (t) = φ
(
2jt− k

)
(2.53)

where j, k are integer indices for the series expansion of the form

f (t) =
∑
j,k

cj,k φj,k (t) . (2.54)

The coe�cients cj,k are called the discrete wavelet transform of the signal
f (t). This use of translation and scale to create an expansion system is
the foundation of all so-called �rst generation wavelets [58].

The system is somewhat similar to the Fourier series described in ()
with frequencies being related by powers of two rather than an integer
multiple and the translation by k giving only the two results of cosine
and sine for the Fourier series.
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The second almost universal requirement is that the wavelet sys-
tem generates a multiresolution analysis (MRA). This means that a low
resolution function (low scale j) can be expanded in terms of the same
function at a higher resolution (higher j). This is stated by requiring that
the generator of a MRA wavelet system, called a scaling function φ (t),
satis�es

φ (t) =
∑
n

h (n) φ (2t− n) . (2.55)

This equation, called the re�nement equation or theMRA equation

or basic recursion equation, is similar to a di�erential equation in that
its solution is what de�nes the basic scaling function and wavelet [19], [10].

The current state of the art is that most of the necessary and su�cient
conditions on the coe�cients h (n) are known for the existence, unique-
ness, orthogonality, and other properties of φ (t). Some of the theory
parallels Fourier theory and some does not.

A third important feature of a MRA wavelet system is a discrete
wavelet transform (DWT) can be calculated by a digital �lter bank using
what is now called Mallat's algorithm. Indeed, this connection with digital
signal processing (DSP) has been a rich source of ideas and methods. With
this �lter bank, one can calculate the DWT of a length-N digital signal
with order N operations. This means the number of multiplications and
additions grows only linearly with the length of the signal. This compares
with Nlog (N) for an FFT and N2 for most methods and worse than that
for some others.

These basic ideas came from the work of Meyer, Daubechies, Mallat,
and others but for a time looked like a solution looking for a problem.
Then a second phase of research showed there are many problems to
which the wavelet is an excellent solution. In particular, the results of
Donoho, Johnstone, Coifman, Beylkin, and others opened another set of
doors.

2.5.2 Generalization of the Basic Wavelet System

After (in some cases during) much of the development of the above basic
ideas, a number of generalizations [10] were made. They are listed below:

1. A larger integer scale factor than M = 2 can be used to give a more
general M-band re�nement equation [55]

φ (t) =
∑
n

h (n) φ (Mt− n) (2.56)
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than the �dyadic" or octave based equation ((2.55)). This also gives
more than two channels in the accompanying �lter bank. It allows a
uniform frequency resolution rather than the resulting logarithmic
one for M = 2.

2. The wavelet system called awavelet packet is generated by �iterat-
ing" the wavelet branches of the �lter bank to give a �ner resolution
to the wavelet decomposition. This was suggested by Coifman and
it too allows a mixture of uniform and logarithmic frequency res-
olution. It also allows a relatively simple adaptive system to be
developed which has an automatically adjustable frequency resolu-
tion based on the properties of the signal.

3. The usual requirement of translation orthogonality of the scal-
ing function and wavelets can be relaxed to give what is called a
biorthogonal system[15]. If the expansion basis is not orthogo-
nal, a dual basis can be created that will allow the usual expansion
and coe�cient calculations to be made. The main disadvantage is
the loss of a Parseval's theorem which maintains energy partition-
ing. Nevertheless, the greater �exibility of the biorthogonal system
allows superior performance in many compression and denoising ap-
plications.

4. The basic re�nement equation ((2.55)) gives the scaling function in
terms of a compressed version of itself (self-similar). If we allow two
(or more) scaling functions, each being a weighted sum of a compress
version of both, a more general set of basis functions results. This
can be viewed as a vector of scaling functions with the coe�cients
being a matrix now. Once again, this generalization allows more
�exibility in the characteristics of the individual scaling functions
and their related multi-wavelets. These are called multi-wavelet
systems and are still being developed.

5. One of the very few disadvantages of the discrete wavelet transform
is the fact it is not shift invariant. In other words, if you shift a
signal in time, its wavelet transform not only shifts, it changes char-
acter! For many applications in denoising and compression, this is
not desirable although it may be tolerable. The DWT can be made
shift-invariant by calculating the DWT of a signal for all possible
shifts and adding (or averaging) the results. That turns out to be
equivalent to removing all of the down-samplers in the associated
�lter bank (an undecimated �lter bank), which is also equivalent
to building an overdetermined or redundant DWT from a tradi-
tional wavelet basis. This overcomplete system is similar to a �tight
frame" and maintains most of the features of an orthogonal basis
yet is shift invariant. It does, however, require Nlog (N) operations.
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6. Wavelet systems are easily modi�ed to being an adaptive system
where the basis adjusts itself to the properties of the signal or the
signal class. This is often done by starting with a large collection
or library of expansion systems and bases. A subset is adaptively
selected based on the e�ciency of the representation using a process
sometimes called pursuit. In other words, a set is chosen that will
result in the smallest number of signi�cant expansion coe�cients.
Clearly, this is signal dependent, which is both its strength and its
limitation. It is nonlinear.

7. One of the most powerful structures yet suggested for using wavelets
for signal processing is to �rst take the DWT, then do a point-wise
linear or nonlinear processing of the DWT, �nally followed by an
inverse DWT. Simply setting some of the wavelet domain expansion
terms to zero results in linear wavelet domain �ltering, similar to
what would happen if the same were done with Fourier transforms.
Donoho [24], [25] and others have shown by using some form of
nonlinear thresholding of the DWT, one can achieve near optimal
denoising or compression of a signal. The concentrating or localizing
character of the DWT allows this nonlinear thresholding to be very
e�ective.

The present state of activity in wavelet research and application shows
great promise based on the above generalizations and extensions of the
basic theory and structure [8]. We now have conferences, workshops,
articles, newsletters, books, and email groups that are moving the state
of the art forward. More details, examples, and software are given in [10],
[57], [42].
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Chapter 3

Discrete-Time Systems1

In the context of discussing signal processing, the most general de�nition
of a system is similar to that of a function. A system is a device, formula,
rule, or some process that assigns an output signal from some given class
to each possible input signal chosen from some allowed class. From this
de�nition one can pose three interesting and practical problems.

1. Analysis: If the input signal and the system are given, �nd the
output signal.

2. Control: If the system and the output signal are given, �nd the
input signal.

3. Synthesis: If the input signal and output signal are given, �nd the
system.

The de�nition of input and output signal can be quite diverse. They could
be scalars, vectors, functions, functionals, or other objects.

All three of these problems are important, but analysis is probably the
most basic and its study usually precedes that of the other two. Analysis
usually results in a unique solution. Control is often unique but there are
some problems where several inputs would give the same output. Synthe-
sis is seldom unique. There are usually many possible systems that will
give the same output for a given input.

In order to develop tools for analysis, control, and design of discrete-
time systems, speci�c de�nitions, restrictions, and classi�cations must be
made. It is the explicit statement of what a system is, not what it isn't,
that allows a descriptive theory and design methods to be developed.

1This content is available online at <http://cnx.org/content/m16883/1.1/>.
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3.1 Classi�cations

The basic classi�cations of signal processing systems are de�ned and listed
here. We will restrict ourselves to discrete-time systems that have ordered
sequences of real or complex numbers as inputs and outputs and will de-
note the input sequence by x (n) and the output sequence by y (n) and
show the process of the system by x (n)→ y (n). Although the indepen-
dent variable n could represent any physical variable, our most common
usages causes us to generically call it time but the results obtained cer-
tainly are not restricted to this interpretation.

1. Linear . A system is classi�ed as linear if two conditions are true.

• If x (n)→ y (n) then a x (n)→ a y (n) for all a. This property
is called homogeneity or scaling.

• If x1 (n) → y1 (n) and x2 (n) → y2 (n), then
(x1 (n) + x2 (n)) → (y1 (n) + y2 (n)) for all x1 and x2.
This property is called superposition or additivity.

If a system does not satisfy both of these conditions for all inputs,
it is classi�ed as nonlinear. For most practical systems, one of these
conditions implies the other. Note that a linear system must give a
zero output for a zero input.

2. Time Invariant , also called index invariant or shift invariant. A
system is classi�ed as time invariant if x (n+ k) → y (n+ k) for
any integer k. This states that the system responds the same way
regardless of when the input is applied. In most cases, the system
itself is not a function of time.

3. Stable . A system is called bounded-input bounded-output stable
if for all bounded inputs, the corresponding outputs are bounded.
This means that the output must remain bounded even for inputs
arti�cially constructed to maximize a particular system's output.

4. Causal . A system is classi�ed as causal if the output of a system
does not precede the input. For linear systems this means that
the impulse response of a system is zero for time before the input.
This concept implies the interpretation of n as time even though
it may not be. A system is semi-causal if after a �nite shift in
time, the impulse response is zero for negative time. If the impulse
response is nonzero for n → −∞, the system is absolutely non-
causal. Delays are simple to realize in discrete-time systems and
semi-causal systems can often be made realizable if a time delay
can be tolerated.

5. Real-Time . A discrete-time system can operate in �real-time" if an
output value in the output sequence can be calculated by the system
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before the next input arrives. If this is not possible, the input and
output must be stored in blocks and the system operates in �batch"
mode. In batch mode, each output value can depend on all of the
input values and the concept of causality does not apply.

These de�nitions will allow a powerful class of analysis and design meth-
ods to be developed and we start with convolution.

3.2 Convolution

The most basic and powerful operation for linear discrete-time system
analysis, control, and design is discrete-time convolution. We �rst de-
�ne the discrete-time unit impulse, also known as the Kronecker delta
function, as

δ (n) = {
1 for n = 0

0 otherwise.
(3.1)

If a system is linear and time-invariant, and δ (n) → h (n), the out-
put y (n) can be calculated from its input x (n) by the operation called
convolution denoted and de�ned by

y (n) = h (n) ∗ x (n) =
∞∑

m=−∞
h (n−m)x (m) (3.2)

It is informative to methodically develop this equation from the basic
properties of a linear system.

3.2.1 Derivation of the Convolution Sum

We �rst de�ne a complete set of orthogonal basis functions by δ (n−m)
for m = 0, 1, 2, · · · ,∞. The input x (n) is broken down into a set of
inputs by taking an inner product of the input with each of the ba-
sis functions. This produces a set of input components, each of which
is a single impulse weighted by a single value of the input sequence
(x (n) , δ (n−m)) = x (m) δ (n−m). Using the time invariant property
of the system, δ (n−m)→ h (n−m) and using the scaling property of a
linear system, this gives an output of x (m) δ (n−M)→ x (m)h (n−m).
We now calculate the output due to x (n) by adding outputs due to each
of the resolved inputs using the superposition property of linear systems.
This is illustrated by the following diagram:
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x (n) = {

x (n) δ (n) = x (0) δ (n) → x (0)h (n)

x (n) δ (n− 1) = x (1) δ (n− 1) → x (1)h (n− 1)

x (n) δ (n− 2) = x (2) δ (n− 2) → x (2)h (n− 2)
.

.

.

.

.

.

x (n) δ (n−m) = x (m) δ (n−m) → x (m)h (n−m)

} =

y (n)

(3.3)

or

y (n) =
∞∑

m=−∞
x (m) h (n−m) (3.4)

and changing variables gives

y (n) =
∞∑

m=−∞
h (n−m) x (m) (3.5)

If the system is linear but time varying, we denote the response to an
impulse at n = m by δ (n−m)→ h (n,m). In other words, each impulse
response may be di�erent depending on when the impulse is applied. From
the development above, it is easy to see where the time-invariant property
was used and to derive a convolution equation for a time-varying system
as

y (n) = h (n,m) ∗ x (n) =
∞∑

m=−∞
h (n,m)x (m) . (3.6)

Unfortunately, relaxing the linear constraint destroys the basic structure
of the convolution sum and does not result in anything of this form that
is useful.

By a change of variables, one can easily show that the convolution
sum can also be written

y (n) = h (n) ∗ x (n) =
∞∑

m=−∞
h (m)x (n−m) . (3.7)

If the system is causal, h (n) = 0 for n < 0 and the upper limit on the
summation in (2.2) becomes m = n. If the input signal is causal, the
lower limit on the summation becomes zero. The form of the convolution
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sum for a linear, time-invariant, causal discrete-time system with a causal
input is

y (n) = h (n) ∗ x (n) =
n∑

m=0

h (n−m)x (m) (3.8)

or, showing the operations commute

y (n) = h (n) ∗ x (n) =
n∑

m=0

h (m)x (n−m) . (3.9)

Convolution is used analytically to analyze linear systems and it can also
be used to calculate the output of a system by only knowing its impulse
response. This is a very powerful tool because it does not require any
detailed knowledge of the system itself. It only uses one experimentally
obtainable response. However, this summation cannot only be used to an-
alyze or calculate the response of a given system, it can be an implemen-
tation of the system. This summation can be implemented in hardware
or programmed on a computer and become the signal processor.

3.2.2 The Matrix Formulation of Convolution

Some of the properties and characteristics of convolution and of the sys-
tems it represents can be better described by a matrix formulation than
by the summation notation. The �rst L values of the discrete-time con-
volution de�ned above can be written as a matrix operator on a vector of
inputs to give a vector of the output values.

y0

y1

y2

...

yL−1


=



h0 0 0 · · · 0

h1 h0 0

h2 h1 h0

...
...

hL−1 · · · h0





x0

x1

x2

...

xL−1


(3.10)

If the input sequence x is of length N and the operator signal h is of
length M , the output is of length L = N + M − 1. This is shown for
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N = 4 and M = 3 by the rectangular matrix operation

y0

y1

y2

y3

y4

y5


=



h0 0 0 0

h1 h0 0 0

h2 h1 h0 0

0 h2 h1 h0

0 0 h2 h1

0 0 0 h2




x0

x1

x2

x3

 (3.11)

It is clear that if the system is causal (h (n) = 0 for n < 0), theH matrix is
lower triangular. It is also easy to see that the system being time-invariant
is equivalent to the matrix being Toeplitz [16]. This formulation makes it
obvious that if a certain output were desired from a length 4 input, only
4 of the 6 values could be speci�ed and the other 2 would be controlled
by them.

Although the formulation of constructing the matrix from the impulse
response of the system and having it operate on the input vector seems
most natural, the matrix could have been formulated from the input and
the vector would have been the impulse response. Indeed, this might the
appropriate formulation if one were specifying the input and output and
designing the system.

The basic convolution de�ned in ((3.2)), derived in ((3.3)), and given in
matrix form in ((3.10)) relates the input to the output for linear systems.
This is the form of convolution that is related to multiplication of the
DTFT and z-transform of signals. However, it is cyclic convolution that
is fundamentally related to the DFT and that will be e�ciently calculated
by the fast Fourier transform (FFT) developed in Part III of these notes.
Matrix formulation of length-L cyclic convolution is given by

y0

y1

y2

...

yL−1


=



h0 hL−1 hL−2 · · · h1

h1 h0 hL−1 h2

h2 h1 h0 h3

...
...

hL−1 · · · h0





x0

x1

x2

...

xL−1


(3.12)

This matrix description makes it clear that the matrix operator is always
square and the three signals, x (n), h (n), and y (n), are necessarily of the
same length.
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There are several useful conclusions that can be drawn from linear
algebra [16]. The eigenvalues of the non-cyclic are all the same since
the eigenvalues of a lower triangular matrix are simply the values on the
diagonal.

Although it is less obvious, the eigenvalues of the cyclic convolution
matrix are the N values of the DFT of h (n) and the eigenvectors are
the basis functions of the DFT which are the column vectors of the DFT
matrix. The eigenvectors are completely controlled by the structure of
H being a cyclic convolution matrix and are not at all a function of the
values of h (n). The DFT matrix equation from (3.10) is given by

X = Fx and Y = Fy (3.13)

where X is the length-N vector of the DFT values, H is the matrix
operator for the DFT, and x is the length-N vector of the signal x (n)
values. The same is true for the comparable terms in y.

The matrix form of the length-N cyclic convolution in (3.10) is written

y = Hx (3.14)

Taking the DFT both sides and using the IDFT on x gives

Fy = Y = FHx = FHF−1X (3.15)

If we de�ne the diagonal matrix Hd as an L by L matrix with the values
of the DFT of h (n) on its diagonal, the convolution property of the DFT
becomes

Y = HdX (3.16)

This implies

Hd = FHF−1 and H = F−1HdF (3.17)

which is the basis of the earlier statement that the eigenvalues of the cyclic
convolution matrix are the values of the DFT of h (n) and the eigenvectors
are the orthogonal columns of F. The DFT matrix diagonalizes the cyclic
convolution matrix. This is probably the most concise statement of the
relation of the DFT to convolution and to linear systems.

An important practical question is how one calculates the non-cyclic
convolution needed by system analysis using the cyclic convolution of the
DFT. The answer is easy to see using the matrix description of H. The
length of the output of non-cyclic convolution is N + M − 1. If N − 1
zeros are appended to the end of h (n) and M − 1 zeros are appended to
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the end of x (n), the cyclic convolution of these two augmented signals
will produce exactly the same N +M −1 values as non-cyclic convolution
would. This is illustrated for the example considered before.

y0

y1

y2

y3

y4

y5


=



h0 0 0 0 h2 h1

h1 h0 0 0 0 h2

h2 h1 h0 0 0 0

0 h2 h1 h0 0 0

0 0 h2 h1 h0 0

0 0 0 h2 h1 h0





x0

x1

x2

x3

0

0


(3.18)

Just enough zeros were appended so that the nonzero terms in the upper
right-hand corner of H are multiplied by the zeros in the lower part of
x and, therefore, do not contribute to y. This does require convolving
longer signals but the output is exactly what we want and we calculated
it with the DFT-compatible cyclic convolution. Note that more zeros
could have been appended to h and x and the �rst N + M − 1 terms of
the output would have been the same only more calculations would have
been necessary. This is sometimes done in order to use forms of the FFT
that require that the length be a power of two.

If fewer zeros or none had been appended to h and x, the nonzero
terms in the upper right-hand corner of H, which are the �tail" of h (n),
would have added the values that would have been at the end of the non-
cyclic output of y (n) to the values at the beginning. This is a natural
part of cyclic convolution but is destructive if non-cyclic convolution is
desired and is called aliasing or folding for obvious reasons. Aliasing
is a phenomenon that occurs in several arenas of DSP and the matrix
formulation makes it easy to understand.

3.3 The Z-Transform Transfer Function

Although the time-domain convolution is the most basic relationship of
the input to the output for linear systems, the z-transform is a close
second in importance. It gives di�erent insight and a di�erent set of tools
for analysis and design of linear time-invariant discrete-time systems.

If our system in linear and time-invariant, we have seen that its output
is given by convolution.

y (n) =
∞∑

m=−∞
h (n−m)x (m) (3.19)
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Assuming that h (n) is such that the summation converges properly, we
can calculate the output to an input that we already know has a special
relation with discrete-time transforms. Let x (n) = zn which gives

y (n) =
∞∑

m=−∞
h (n−m) zm (3.20)

With the change of variables of k = n−m, we have

y (n) =
∞∑

k=−∞

h (k) zn−k =

[ ∞∑
k=−∞

h (k) z−k
]
zn (3.21)

or

y (n) = H (z) zn (3.22)

We have the remarkable result that for an input of x (n) = zn, we get
an output of exactly the same form but multiplied by a constant that
depends on z and this constant is the z-transform of the impulse response
of the system. In other words, if the system is thought of as a matrix
or operator, zn is analogous to an eigenvector of the system and H (z) is
analogous to the corresponding eigenvalue.

We also know from the properties of the z-transform that convolution
in the n domain corresponds to multiplication in the z domain. This
means that the z-transforms of x (n) and y (n) are related by the simple
equation

Y (z) = H (z)X (z) (3.23)

The z-transform decomposes x (n) into its various components along
zn which passing through the system simply multiplies that value time
H (z) and the inverse z-transform recombines the components to give the
output. This explains why the z-transform is such a powerful operation
in linear discrete-time system theory. Its kernel is the eigenvector of these
systems.

The z-transform of the impulse response of a system is called its trans-
fer function (it transfers the input to the output) and multiplying it times
the z-transform of the input gives the z-transform of the output for any
system and signal where there is a common region of convergence for the
transforms.
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3.4 Frequency Response of Discrete-Time Sys-

tems

The frequency response of a Discrete-Time system is something experi-
mentally measurable and something that is a complete description of a
linear, time-invariant system in the same way that the impulse response
is. The frequency response of a linear, time-invariant system is de�ned
as the magnitude and phase of the sinusoidal output of the system with
a sinusoidal input. More precisely, if

x (n) = cos (ωn) (3.24)

and the output of the system is expressed as

y (n) = M (ω) cos (ωn+ φ (ω)) + T (n) (3.25)

where T (n) contains no components at ω, thenM (ω) is called the magni-
tude frequency response and φ (ω) is called the phase frequency response.
If the system is causal, linear, time-invariant, and stable, T (n) will ap-
proach zero as n → ∞ and the only output will be the pure sinusoid at
the same frequency as the input. This is because a sinusoid is a special
case of zn and, therefore, an eigenvector.

If z is a complex variable of the special form

z = ejω (3.26)

then using Euler's relation of ejx = cos (x) + jsin (x), one has

x (n) = ejωn = cos (ωn) + jsin (ωn) (3.27)

and therefore, the sinusoidal input of (3.22) is simply the real part of zn

for a particular value of z, and, therefore, the output being sinusoidal is
no surprise.

3.5 Fundamental Theorem of Linear, Time-

Invariant Systems

The fundamental theorem of calculus states that an integral de�ned as an
inverse derivative and one de�ned as an area under a curve are the same.
The fundamental theorem of algebra states that a polynomial given as
a sum of weighted powers of the independent variable and as a product
of �rst factors of the zeros are the same. The fundamental theorem of
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arithmetic states that an integer expressed as a sum of weighted units,
tens, hundreds, etc. or as the product of its prime factors is the same.

These fundamental theorems all state equivalences of di�erent ways of
expressing or calculating something. The fundamental theorem of linear,
time-invariant systems states calculating the output of a system can be
done with the impulse response by convolution or with the frequency
response (or z-transform) with transforms. Stated another way, it says
the frequency response can be found from directly calculating the output
from a sinusoidal input or by evaluating the z-transform on the unit circle.

Z{h (n)}|z=ejω = A (ω) ejΘ(ω) (3.28)

3.6 Pole-Zero Plots

3.6.1 Relation of PZ Plots, FR Plots, Impulse R

3.7 State Variable Formulation

3.7.1 Di�erence Equations

3.7.2 Flow Graph Representation

3.8 Standard Structures

3.8.1 FIR and IIR Structures

3.9 Quantization E�ects

3.10 Multidimensional Systems
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Chapter 4

Sampling, Up�Sampling,

Down�Sampling, and

Multi�Rate1

A very important and fundamental operation in discrete-time signal pro-
cessing is that of sampling. Discrete-time signals are often obtained from
continuous-time signal by simple sampling. This is mathematically mod-
eled as the evaluation of a function of a real variable at discrete values of
time [52]. Physically, it is a more complicated and varied process which
might be modeled as convolution of the sampled signal by a narrow pulse
or an inner product with a basis function or, perhaps, by some nonlinear
process.

The sampling of continuous-time signals is reviewed in the recent
books by Marks [39] which is a bit casual with mathematical details, but
gives a good overview and list of references. He gives a more advanced
treatment in [40]. Some of these references are [44], [54], [38], [35], [34],
[52], [51]. These will discuss the usual sampling theorem but also inter-
pretations and extensions such as sampling the value and one derivative
at each point, or of non uniform sampling.

Multirate discrete-time systems use sampling and sub sampling for a
variety of reasons [18], [59]. A very general de�nition of sampling might
be any mapping of a signal into a sequence of numbers. It might be the
process of calculating coe�cients of an expansion using inner products.
A powerful tool is the use of periodically time varying theory, particu-
larly the bifrequency map, block formulation, commutators, �lter banks,

1This content is available online at <http://cnx.org/content/m16886/1.1/>.
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and multidimensional formulations. One current interest follows from the
study of wavelet basis functions. What kind of sampling theory can be de-
veloped for signals described in terms of wavelets? Some of the literature
can be found in [6], [30], [41], [22], [11].

Another relatively new framework is the idea of tight frames [22], [63],
[11]. Here signals are expanded in terms of an over determined set of
expansion functions or vectors. If these expansions are what is called
a tight frame, the mathematics of calculating the expansion coe�cients
with inner products works just as if the expansion functions were an
orthonormal basis set. The redundancy of tight frames o�ers interesting
possibilities. One example of a tight frame is an over sampled band limited
function expansion.

4.1 Fourier Techniques

We �rst start with the most basic sampling ideas based on various forms
of Fourier transforms [50], [5], [63].

The Spectrum of a Continuous-Time Signal and the Fourier Transform
Although in many cases digital signal processing views the signal as

simple sequence of numbers, here we are going to pose the problem as
originating with a function of continuous time. The fundamental tool is
the classical Fourier transform de�ned by

F (ω) =
∫
f (t) e−jωt dt (4.1)

and its inverse

f (t) =
1

2π

∫
F (ω) ejωt dω. (4.2)

where j =
√
−1. The Fourier transform of a signal is called its spectrum

and it is complex valued with a magnitude and phase.
If the signal is periodic with period f (t) = f (t+ P ), the Fourier

transform does not exist as a function (it may as a distribution) therefore
the spectrum is de�ned as the set of Fourier series coe�cients

C (k) =
1
P

∫ P

0

f (t) e−j2πkt/P dt (4.3)

with the expansion having the form

f (t) =
∑
k

C (k) ej2πkt/P . (4.4)

www.jntuworld.com



49

The functions gk (t) = ej2πkt/P form an orthogonal basis for periodic
functions and ((4.3)) is the inner product C (k) =< f (t) , gk (t) >.

For the non-periodic case in ((4.1)) the spectrum is a function of con-
tinuous frequency and for the periodic case in ((4.3)), the spectrum is a
number sequence (a function of discrete frequency).

The Spectrum of a Sampled Signal and the DTFT
The discrete-time Fourier transform (DTFT) as de�ned in terms sam-

ples of a continuous function is

Fd (ω) =
∑
n

f (Tn) e−jωTn (4.5)

and its inverse

f (Tn) =
T

2π

∫ π/T

−π/T
Fd (ω) ejωTn dω (4.6)

can be derived by noting that Fd (ω) is periodic with period P = 2π/T
and, therefore, it can be expanded in a Fourier series with ((4.6)) resulting
from calculating the series coe�cients using ((4.3)).

The spectrum of a discrete-time signal is de�ned as the DTFT of the
samples of a continuous-time signal given in ((4.5)). Samples of the signal
are given by the inverse DTFT in ((4.6)) but they can also be obtained
by directly sampling f (t) in ((4.2)) giving

f (Tn) =
1

2π

∫ ∞
−∞

F (ω) ejωTn dω (4.7)

which can be rewritten as an in�nite sum of �nite integrals in the form

f (Tn) =
1

2π

∑
`

∫ 2π/T

0

F (ω + 2π`/T ) ej(ω+2π`/T )Tn dω (4.8)

=
1

2π

∫ 2π/T

0

[∑
`

F (ω + 2π`/T )

]
ej(ω+2π`/T )Tn dω (4.9)

where Fp (ω) is a periodic function made up of shifted versions of F (ω)
(aliased) de�ned in ((4.10)) Because ((4.9)) and ((4.6)) are equal for all
Tn and because the limits can be shifted by π/T without changing the
equality, the integrands are equal and we have

Fd (ω) =
1
T

∑
`

F (ω + 2π`/T ) =
1
T
Fp (ω) . (4.10)
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where Fp (ω) is a periodic function made up of shifted versions of F (ω)
as in ((4.9)). The spectrum of the samples of f (t) is an aliased version
of the spectrum of f (t) itself. The closer together the samples are taken,
the further apart the centers of the aliased spectra are.

This result is very important in determining the frequency domain
e�ects of sampling. It shows what the sampling rate should be and it is
the basis for deriving the sampling theorem.

Samples of the Spectrum of a Sampled Signal and the DFT
Samples of the spectrum can be calculated from a �nite number of

samples of the original continuous-time signal using the DFT. If we let
the length of the DFT beN and separation of the samples in the frequency
domain be ∆ and de�ne the periodic functions

Fp (ω) =
∑
`

F (ω +N∆`) (4.11)

and

fp (t) =
∑
m

f (t+NTm) (4.12)

then from ((4.62)) and ((4.10)) samples of the DTFT of f (Tn) are

Fp (∆k) = T
∑
n

f (Tn) e−jT∆nk (4.13)

= T
∑
m

N−1∑
n=0

f (Tn+ TNm) e−j∆(Tn+TNm)k (4.14)

= T

N−1∑
n=0

[∑
m

f (Tn+ TNm)

]
e−j∆(Tn+TNm)k, (4.15)

therefore,

Fp (∆k) = DFT {fp (Tn)} (4.16)

if ∆TN = 2π. This formula gives a method for approximately calculating
values of the Fourier transform of a function by taking the DFT (usually
with the FFT) of samples of the function. This formula can easily be
veri�ed by forming the Riemann sum to approximate the integrals in
((4.1)) or ((4.2)).

Samples of the DTFT of a Sequence
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If the signal is discrete in origin and is not a sampled function of a
continuous variable, the DTFT is de�ned with T = 1 as

H (ω) =
∑
n

h (n) e−jωn (4.17)

with an inverse

h (n) =
1

2π

∫ π

−π
H (ω) ejωn dω. (4.18)

If we want to calculate H (ω), we must sample it and that is written as

H (∆k) =
∑
n

h (n) e−j∆kn (4.19)

which after breaking the sum into an in�nite sum of length-N sums as
was done in ((4.15)) becomes

H (∆k) =
∑
m

N−1∑
n=0

h (n+Nm) e−j∆kn (4.20)

if ∆ = 2π/N . This allows us to calculate samples of the DTFT by taking
the DFT of samples of a periodized h (n).

H (∆k) = DFT {hp (n)}. (4.21)

This a combination of the results in ((4.10)) and in ((4.16)).
Fourier Series Coe�cients from the DFT
If the signal to be analyzed is periodic, the Fourier integral in ((4.1))

does not converge to a function (it may to a distribution). This function is
usually expanded in a Fourier series to de�ne its spectrum or a frequency
description. We will sample this function and show how to approximately
calculate the Fourier series coe�cients using the DFT of the samples.

Consider a periodic signal f̃ (t) = f̃ (t+ P ) with N samples taken
every T seconds to give T̃ n (t) for integer n such that NT = P . The
Fourier series expansion of f̃ (t) is

f̃ (t) =
∞∑

k=−∞

C (k) e2πkt/P (4.22)

with the coe�cients given in ((4.3)). Samples of this are

f̃ (Tn) =
∞∑

k=−∞

C (k) e2πkTn/P =
∞∑

k=−∞

C (k) e2πkn/N (4.23)

www.jntuworld.com



52
CHAPTER 4. SAMPLING, UP�SAMPLING,

DOWN�SAMPLING, AND MULTI�RATE

which is broken into a sum of sums as

f̃ (Tn) =
∑∞

`−∞
∑N−1

k=0 C (k +N`) e2π(k+N`)n/N =∑N−1
k=0

[∑∞
`−∞C (k +N`)

]
e2πkn/N .

(4.24)

But the inverse DFT is of the form

f̃ (Tn) =
1
N

N−1∑
k=0

F (k) ej2πnk/N (4.25)

therefore,

DFT {f̃ (Tn)} = N
∑
`

C (k +N`) = N Cp (k) . (4.26)

and we have our result of the relation of the Fourier coe�cients to the
DFT of a sampled periodic signal. Once again aliasing is a result of
sampling.

Shannon's Sampling Theorem
Given a signal modeled as a real (sometimes complex) valued function

of a real variable (usually time here), we de�ne a bandlimited function as
any function whose Fourier transform or spectrum is zero outside of some
�nite domain

|F (ω) | = 0 for |ω| > W (4.27)

for some W <∞. The sampling theorem states that if f (t) is sampled

fs (n) = f (Tn) (4.28)

such that T < 2π/W , then f (t) can be exactly reconstructed (interpo-
lated) from its samples fs (n) using

f (t) =
∞∑

n=−∞
fs (n)

[
sin (πt/T − πn)
πt/T − πn

]
. (4.29)

This is more compactly written by de�ning the sinc function as

sinc (x) =
sin (x)
x

(4.30)

which gives the sampling formula () the form

f (t) =
∑
n

fs (n) sinc (πt/T − πn) . (4.31)
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The derivation of () or () can be done a number of ways. One of the
quickest uses in�nite sequences of delta functions and will be developed
later in these notes. We will use a more direct method now to better see
the assumptions and restrictions.

We �rst note that if f (t) is bandlimited and if T < 2π/W then there
is no overlap or aliasing in Fp (ω). In other words, we can write ((4.2)) as

f (t) =
1

2π

∫ ∞
−∞

F (ω) ejωt dω =
1

2π

∫ π/T

−π/T
Fp (ω) ejωt dω (4.32)

but

Fp (ω) =
∑
`

F (ω + 2π`/T ) = T
∑
n

f (Tn) e−jωTn (4.33)

therefore,

f (t) =
1

2π

∫ π/T

−π/T

[
T
∑
n

f (Tn) e−jωTn
]
ejωt dω (4.34)

=
T

2π

∑
n

f (Tn)
∫ π/T

−π/T
ej(t−Tn)ω dω (4.35)

=
∑
n

f (Tn)
sin
(
π
T t− πn

)
π
T t− πn

(4.36)

which is the sampling theorem. An alternate derivation uses a rectangle
function and its Fourier transform, the sinc function, together with con-
volution and multiplication. A still shorter derivation uses strings of delta
function with convolutions and multiplications. This is discussed later in
these notes.

There are several things to notice about this very important result.
First, note that although f (t) is de�ned for all t from only its samples,
it does require an in�nite number of them to exactly calculate f (t). Also
note that this sum can be thought of as an expansion of f (t) in terms of
an orthogonal set of basis function which are the sinc functions. One can
show that the coe�cients in this expansion of f (t) calculated by an inner
product are simply samples of f (t). In other words, the sinc functions
span the space of bandlimited functions with a very simple calculation of
the expansion coe�cients. One can ask the question of what happens if
a signal is �under sampled". What happens if the reconstruction formula
in () is used when there is aliasing and () is not true. We will not pursue
that just now. In any case, there are many variations and generalizations
of this result that are quite interesting and useful.
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4.2 Calculation of the Fourier Transform and

Fourier Series using the FFT

Most theoretical and mathematical analysis of signals and systems use the
Fourier series, Fourier transform, Laplace transform, discrete-time Fourier
transform (DTFT), or the z-transform, however, when we want to actually
evaluate transforms, we calculate values at sample frequencies. In other
words, we use the discrete Fourier transform (DFT) and, for e�ciency,
usually evaluate it with the FFT algorithm. An important question is how
can we calculate or approximately calculate these symbolic formula-based
transforms with our practical �nite numerical tool. It would certainly
seem that if we wanted the Fourier transform of a signal or function, we
could sample the function, take its DFT with the FFT, and have some
approximation to samples of the desired Fourier transform. We saw in the
previous section that it is, in fact, possible provided some care is taken.

Summary
For the signal that is a function of a continuous variable we have

FT: f (t) → F (ω)

DTFT: f (Tn) → 1
T Fp (ω) = 1

T

∑
`F (ω + 2π`/T )

DFT: fp (Tn) → 1
T Fp (∆k) for ∆TN = 2π

Table 4.1

For the signal that is a function of a discrete variable we have

DTFT: h (n) → H (ω)

DFT: hp (n) → H (∆k) for ∆N = 2π

Table 4.2

For the periodic signal of a continuous variable we have

FS: g̃ (t) → C (k)

DFT: g̃ (Tn) → N Cp (k) for TN = P

Table 4.3

For the sampled bandlimited signal we have
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Sinc: f (t) → f (Tn)

f (t) =
∑
nf (Tn) sinc (2πt/T − πn)

if F (ω) = 0 for |ω| > 2π/T

Table 4.4

These formulas summarize much of the relations of the Fourier trans-
forms of sampled signals and how they might be approximately calculate
with the FFT. We next turn to the use of distributions and strings of
delta functions as tool to study sampling.

4.3 Sampling Functions � the Shah Function

Th preceding discussions used traditional Fourier techniques to develop
sampling tools. If distributions or delta functions are allowed, the Fourier
transform will exist for a much larger class of signals. One should take
care when using distributions as if they were functions but it is a very
powerful extension.

There are several functions which have equally spaced sequences of
impulses that can be used as tools in deriving a sampling formula. These
are called �pitch fork" functions, picket fence functions, comb functions
and shah functions. We start �rst with a �nite length sequence to be used
with the DFT. We de�ne

[U+2A3F]M (n) =
L−1∑
m=0

δ (n−Mm) (4.37)

where N = LM .

DFT{[U+2A3F]M (n)} =∑N−1
n=0

[∑L−1
m=0 δ (n−Mm)

]
e−j2πnk/N

(4.38)

=
L−1∑
m=0

[
N−1∑
n=0

δ (n−Mm) e−j2πnk/N
]

(4.39)

=
L−1∑
m=0

e−j2πMmk/N =
L−1∑
m=0

e−j2πmk/L (4.40)
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= {L<k>L=0
0 otherwise (4.41)

= L
M−1∑
l=0

δ (k − Ll) = L?L (k) (4.42)

For the DTFT we have a similar derivation:

DTFT{[U+2A3F]M (n)} =∑∞
n=−∞

[∑L−1
m=0 δ (n−Mm)

]
e−jωn

(4.43)

=
L−1∑
m=0

[ ∞∑
n=−∞

δ (n−Mm) e−jωn
]

(4.44)

=
L−1∑
m=0

e−jωMm (4.45)

= { 0 otherwise
Lω=k2π/M (4.46)

=
M−1∑
l=0

δ (ω − 2πl/Ml) = K?2π/M (ω) (4.47)

where K is constant.
An alternate derivation for the DTFT uses the inverse DTFT.

IDTFT{[U+2A3F]2π/M (ω)} =
1
2π

∫ π
−π [U+2A3F]2π/M (ω) ejωn dω

(4.48)

=
1

2π

∫ π

−π

∑
l

δ (ω − 2πl/M) ejωn dω (4.49)

=
1

2π

∑
l

∫ π

−π
δ (ω − 2πl/M) ejωn dω (4.50)

=
1

2π

M−1∑
l=0

e2πln/M = {M/2πn=M
0 otherwise (4.51)
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=
(
M

2π

)
?2π/M (ω) (4.52)

Therefore,

?M (n)→
(

2π
M

)
?2π/T (ω) (4.53)

For regular Fourier transform, we have a string of impulse functions in
both the time and frequency. This we see from:

FT{[U+2A3F]T (t)} =
∫∞
−∞
∑

n δ (t− nT ) e−jωt dt =∑
n

∫
δ (t− nT ) e−jωt dt

(4.54)

=
∑
n

e−jωnT = {∞ω=2π/T
0 otherwise (4.55)

=
2π
T

?2π/T (ω) (4.56)

The multiplicative constant is found from knowing the result for a single
delta function.

These �shah functions" will be useful in sampling signals in both the
continuous time and discrete time cases.

4.4 Up�Sampling, Signal Stretching, and In-

terpolation

In several situations we would like to increase the data rate of a signal or,
to increase its length if it has �nite length. This may be part of a multi
rate system or part of an interpolation process. Consider the process of
inserting M − 1 zeros between each sample of a discrete time signal.

y (n) = {x(n/M)<n>M=0(orn=kM)
0 otherwise (4.57)

For the �nite length sequence case we calculate the DFT of the stretched
or up�sampled sequence by

Cs (k) =
MN−1∑
n=0

y (n) Wnk
MN (4.58)

www.jntuworld.com



58
CHAPTER 4. SAMPLING, UP�SAMPLING,

DOWN�SAMPLING, AND MULTI�RATE

Cs (k) =
MN−1∑
n=0

x (n/M) [U+2A3F]M (n) Wnk
MN (4.59)

where the length is now NM and k = 0, 1, · · · , NM − 1. Changing the
index variable n = Mm gives:

Cs (k) =
N−1∑
m=0

x (m) Wmk
N = C (k) . (4.60)

which says the DFT of the stretched sequence is exactly the same as the
DFT of the original sequence but over M periods, each of length N .

For up�sampling an in�nitely long sequence, we calculate the DTFT
of the modi�ed sequence in () as

Cs (ω) =
∑∞

n=−∞ x (n/M) [U+2A3F]M (n) e−jωn =∑
m x (m) e−jωMm

(4.61)

= C (Mω) (4.62)

where C (ω) is the DTFT of x (n). Here again the transforms of the up�
sampled signal is the same as the original signal except over M periods.
This shows up here as Cs (ω) being a compressed version of M periods of
C (ω).

The z-transform of an up�sampled sequence is simply derived by:

Y (z) =
∑∞

n=−∞ y (n) z−n =∑
n x (n/M) [U+2A3F]M (n) z−n =

∑
m x (m) z−Mm

(4.63)

= X
(
zM
)

(4.64)

which is consistent with a complex version of the DTFT in ((4.62)).
Notice that in all of these cases, there is no loss of information or

invertibility. In other words, there is no aliasing.

4.5 Down�Sampling, Subsampling, or Decima-

tion

In this section we consider the sampling problem where, unless there
is su�cient redundancy, there will be a loss of information caused by
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removing data in the time domain and aliasing in the frequency domain.
The sampling process or the down sampling process creates a new

shorter or compressed signal by keeping every M th sample of the original
sequence. This process is best seen as done in two steps. The �rst is to
mask o� the terms to be removed by setting M − 1 terms to zero in each
length-M block (multiply x (n) by [U+2A3F]M (n)), then that sequence
is compressed or shortened by removing the M − 1 zeroed terms.

We will now calculate the length L = N/M DFT of a sequence that
was obtained by sampling everyM terms of an original length-N sequence
x (n). We will use the orthogonal properties of the basis vectors of the
DFT which says:

M−1∑
n=0

e−j2πnl/M = {M if n is an integer multiple ofM
0 otherwise. (4.65)

We now calculate the DFT of the down-sampled signal.

Cd (k) =
L−1∑
m=0

x (Mm)Wmk
L (4.66)

where N = LM and k = 0, 1, ...,L− 1. This is done by masking x (n) .

Cd (k) =
N−1∑
n=0

x (n)xM (n)Wnk
L (4.67)

=
N−1∑
n=0

x (n)

[
1
M

M−1∑
l=0

e−j2πnl/M

]
e−j2πnk/N (4.68)

=
1
M

M−1∑
l=0

N−1∑
n=0

x (n) ej2π(k+Ll)n/N (4.69)

=
1
M

M−1∑
l=0

C (k + Ll) (4.70)

The compression or removal of the masked terms is achieved in the fre-
quency domain by using k = 0, 1, ...,L− 1 This is a length-L DFT of
the samples of x (n). Unless C (k) is su�ciently bandlimited, this causes
aliasing and x (n) is not unrecoverable.

It is instructive to consider an alternative derivation of the above re-
sult. In this case we use the IDFT given by

x (n) =
1
N

N−1∑
k=0

C (k) W−nkN . (4.71)
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The sampled signal gives

y (n) = x (Mn) =
1
N

N−1∑
k=0

C (k) W−Mnk
N . (4.72)

for n = 0, 1, · · · , L− 1. This sum can be broken down by

y (n) =
1
N

L−1∑
k=0

M−1∑
l=0

C (k + Ll) W−Mn(k+Ll)
N . (4.73)

=
1
N

L−1∑
k=0

[
M−1∑
l=0

C (k + Ll)

]
W−Mnk
N . (4.74)

From the term in the brackets, we have

Cs (k) =
M−1∑
l=0

C (k + Ll) (4.75)

as was obtained in ((4.70)).
Now consider still another derivation using shah functions. Let

xs (n) = [U+2A3F]M (n) x (n) (4.76)

From the convolution property of the DFT we have

Cs (k) = L [U+2A3F]L (k) ∗ C (k) (4.77)

therefore

Cs (k) =
M−1∑
l=0

C (k + Ll) (4.78)

which again is the same as in ((4.70)).
We now turn to the down sampling of an in�nitely long signal which

will require use of the DTFT of the signals.

Cs (ω) =
∞∑

m=−∞
x (Mm) e−jωMm (4.79)

=
∑
n

x (n) [U+2A3F]M (n) e−jωn (4.80)

=
∑
n

x (n)

[
1
M

M−1∑
l=0

e−j2πnl/M

]
e−jωn (4.81)
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=
1
M

M−1∑
l=0

∑
n

x (n) e−j(ω−2πl/M)n (4.82)

=
1
M

M−1∑
l=0

C (ω − 2πl/M) (4.83)

which shows the aliasing caused by the masking (sampling without com-
pression). We now give the e�ects of compressing xs (n) which is a simple
scaling of ω. This is the inverse of the stretching results in ((4.62)).

Cs (ω) =
1
M

M−1∑
l=0

C (ω/M − 2πl/M) . (4.84)

In order to see how the various properties of the DFT can be used,
consider an alternate derivation which uses the IDTFT.

x (n) =
1

2π

∫ π

−π
C (ω) ejωn dω (4.85)

which for the down�sampled signal becomes

x (Mn) =
1

2π

∫ π

−π
C (ω) ejωMn dω (4.86)

The integral broken into the sum ofM sections using a change of variables
of ω = (ω1 + 2πl) /M giving

x (Mn) = 1
2π

∑M−1
l=0

∫ π
−π C (ω1/M + 2πl/M) ej(ω1/M+2πl/M)Mn dω1(4.87)

which shows the transform to be the same as given in ().
Still another approach which uses the shah function can be given by

xs (n) = [U+2A3F]M (n) x (n) (4.88)

which has as a DTFT

Cs (ω) =
(

2π
M

)
[U+2A3F]2π/M (ω) ∗ C (ω) (4.89)

=
2π
M

M−1∑
l=0

C (ω + 2πl/M) (4.90)
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which after compressing becomes

Cs =
2π
M

M−1∑
l=0

C (ω/M + 2πl/M) (4.91)

which is same as ().
Now we consider the e�ects of down�sampling on the z-transform of

a signal.

X (z) =
∞∑

n=−∞
x (n) z−n (4.92)

Applying this to the sampled signal gives

Xs (z) =
∑
n

x (Mn) z−Mn =
∑
n

x (n) [U+2A3F]M (n) z−n (4.93)

=
∑
n

x (n)
M−1∑
l=0

ej2πnl/M z−n (4.94)

=
M−1∑
l=0

∑
n

x (n) {ej2πl/M z}
−n

(4.95)

=
M−1∑
l=0

X
(
e−j2πl/M z

)
(4.96)

which becomes after compressing

=
M−1∑
l=0

X
(
e−j2πl/M z1/M

)
. (4.97)

This concludes our investigations of the e�ects of down�sampling a
discrete�time signal and we discover much the same aliasing properties
as in sampling a continuous�time signal. We also saw some of the math-
ematical steps used in the development.

4.6 More Later

We will later develop relations of sampling to multirate systems, periodi-
cally time varying systems, and block processing. This should be a very
e�ective formulation for teaching as well as research on these topics.
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